gut microbiome, diet, and human health

Thursday, June 14
1pm EST / 10am PST

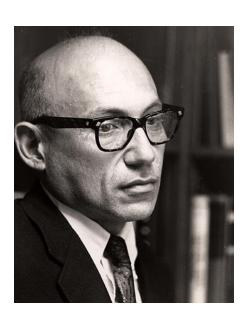
a webinar offering from siggis

webinar housekeeping

- you are muted
 - write questions in the chat box
- will be emailing the following after the webinar:
 - presentation slides
 - summary handout
 - cpe certificate
 - link to the webinar recording
- continue the conversation
 - please use #siggisSessions and follow us on Twitter @siggisdairy

webinar speaker & disclosures

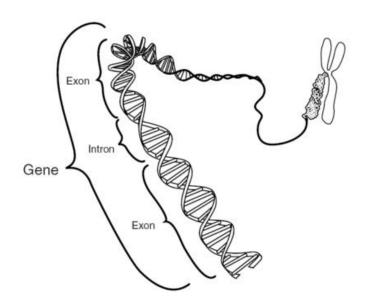
Johanna W. Lampe, PhD, RD


- Public Health Sciences Division, Fred Hutchinson Cancer Research Center,
- Department of Epidemiology, University of Washington Seattle, WA
- affiliation/financial interests (past 12 months):
 - grants/research support: NIH
 - Scientific Advisory Board/Consultant: US Highbush Blueberry Council Health Research Committee

outline

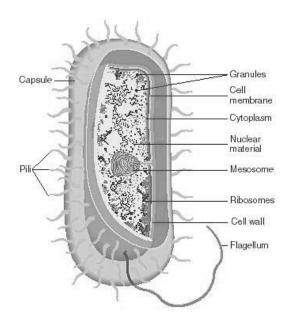
- introduction to the gut microbiome
- o diet's effect on the gut microbiome
- o gut microbiome's effect on diet
- o pro-, pre- and synbiotics
- potential contributions of fermented foods
- o impact of the gut microbiome on human health
- consumer takeaways

what is the microbiome?


"The ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space."

> Joshua Lederberg 1925-2008

microbiome vs microbiota?

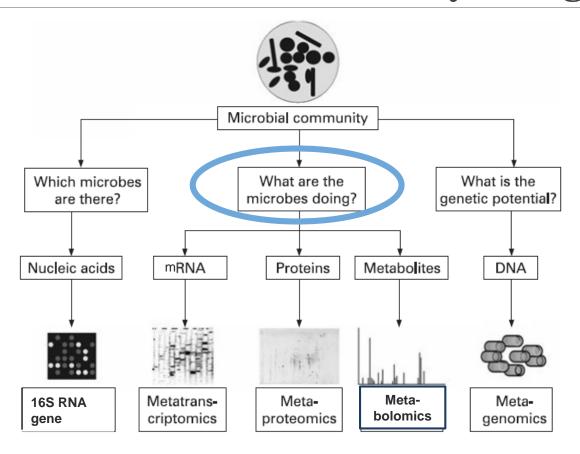

microbiome: all the genes in the microbial community

collective genetic material

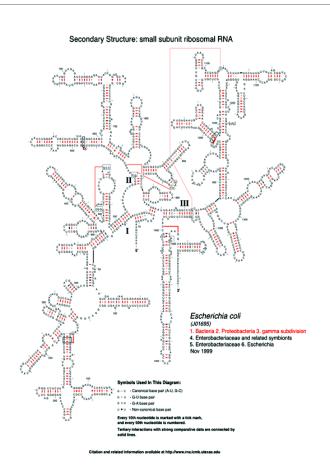
microbiota: all community members, including bacteria, archaea, and eukarya

collective microbes

the gut microbiome: who is there?

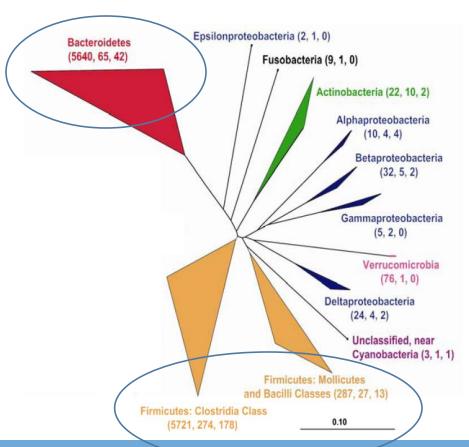

bacteria

viruses


protozoa

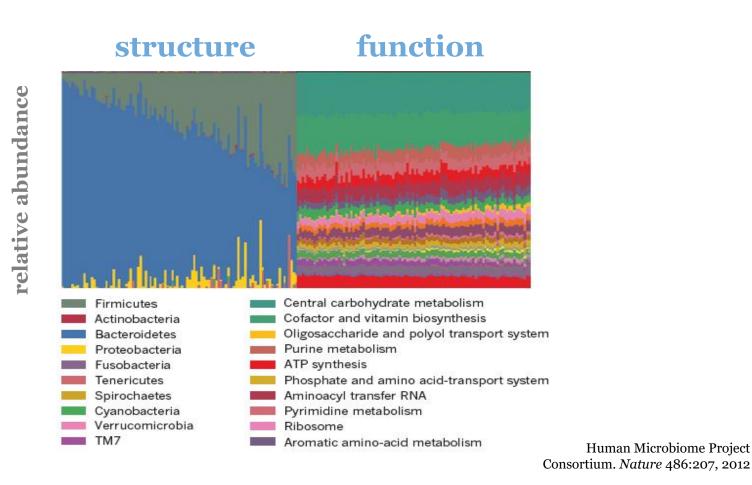
fungi

characterizing the gut microbial community: who is there and what are they doing?


characterizing the gut microbiome with 16s rRNA genes: who is there?

- component of small subunit of prokaryotic ribosomes
- highly conserved in different species of bacteria and archaea
- no horizontal gene transfer
- hyper-variable regions provide speciesspecific signature sequences for bacterial identification.

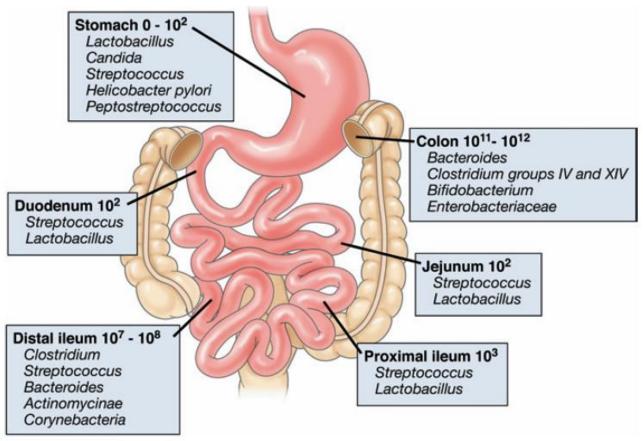
bacterial diversity in the adult human gut


kingdom • phylum • class • order • family • genus • species • strain

At least 10 different phyla of bacteria found in the human gut

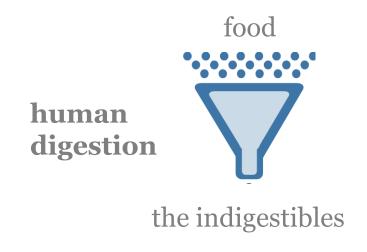
- 5 phyla represent majority of bacteria
- bacteroidetes and firmicutes dominate.
- 100s of species

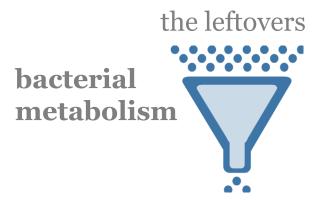
functional redundancy: structural (taxonomic) vs functional variation in the gut microbiome

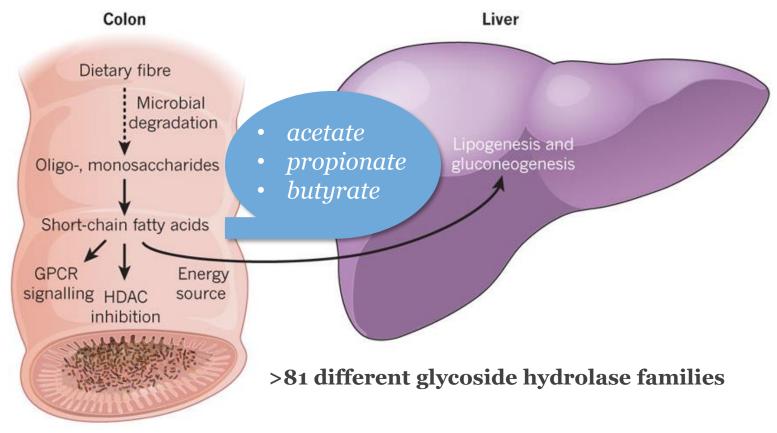


Human Microbiome Project

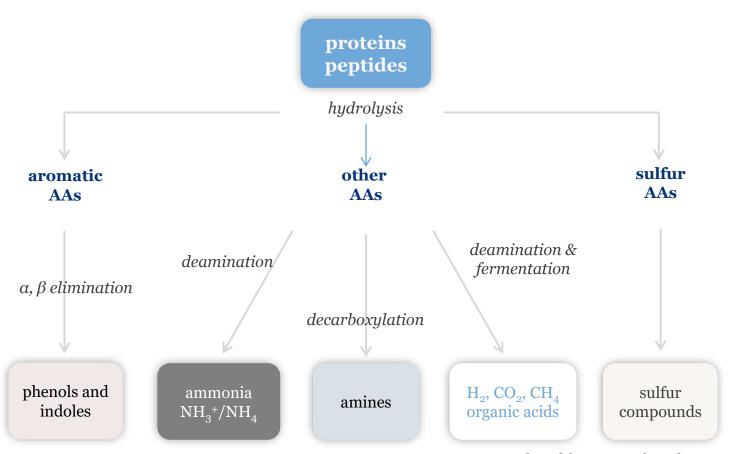
diet's effect on the gut microbiome gut microbiome's effect on diet


the human gut microbiome

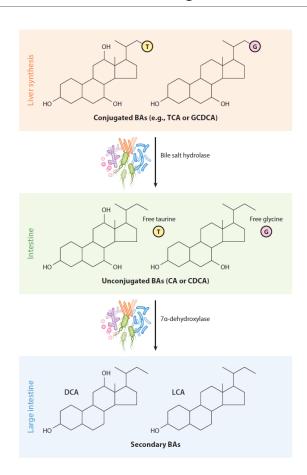

composition and luminal concentrations of microbial groups vary along the GI tract.


gut microbial metabolism

- obtain energy and nutrients to live and reproduce
- microbiome: >100 times as many genes as human genome
- carry out reactions that human gut enzymes cannot:
 - fermentation
 - denitrification
 - sulfate reduction
 - aromatic fission
 - hydrolysis/deconjugation



microbial fermentation of carbohydrates: sugars, dietary fiber and resistant starch


microbial metabolism of proteins & amino acids

Adapted from Nyangale et al. J Proteome Res, 2012

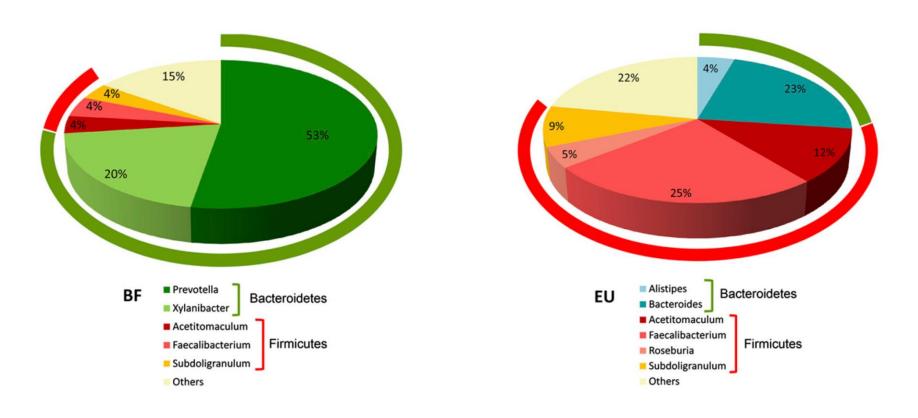
microbial metabolism of dietary fats

- metabolism of lipids
- bile acid metabolism
 - primary to secondary bile acids
 - altered microbial community
 - changes in signaling to liver

Joyce and Gahan, Ann Rev Food Sci Technol, 7:313, 2016

diet's effect on the gut microbiome

evidence from:

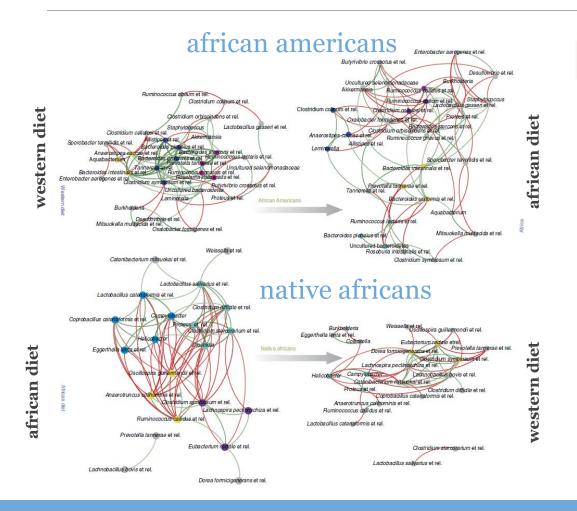

observational studies

- globally distinct populations
- long-term food pattern consumption

short-term dietary interventions

- low- vs high-fiber diets
- animal vs plant food sources
- macronutrient ratios

global population differences: children in rural Africa (BF) vs urban Europe (EU)



De Filippo et al *PNAS* 107:14691, 2010

global population differences: african-americans in US vs native south africans

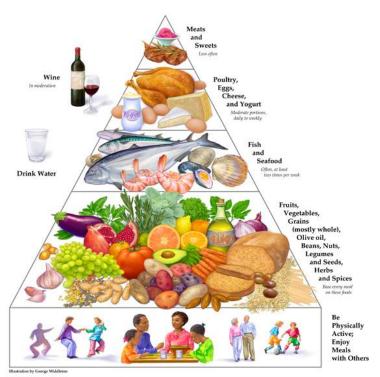
microbiota change with diet switch in african americans and native south africans

2-wk feeding study

US AAs fed:

fiber: 14→55g/d

∘ fat: 35→16%

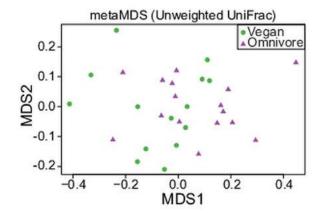

native africans fed:

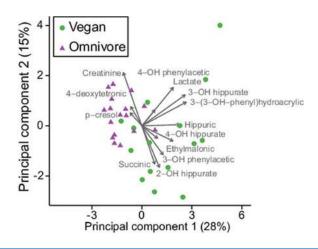
• fiber: 66→12g/d

fat: 16→52%

diet differences within a population: dietary patterns and gut microbiome

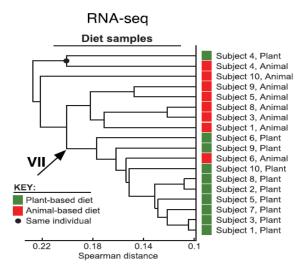
Mediterranean Diet Pyramid

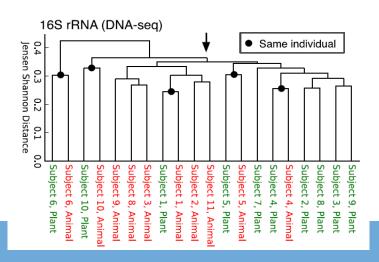

© 2009 Oldways Preservation and Exchange Trust • www.oldwayspt.org


Dietary Patterns:

- Healthy Eating Index 2010
- Alternative Healthy Eating Index
- Mediterranean diet
- DASH diet

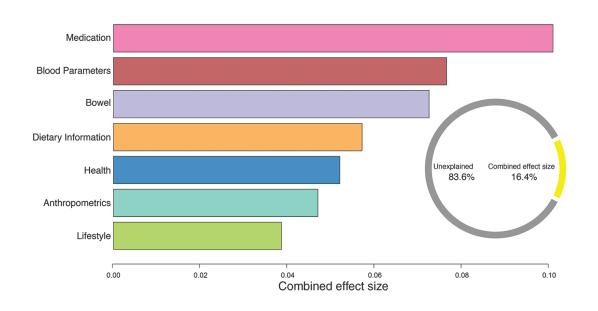
To date, few studies have examined associations between specific healthy eating patterns and the gut microbiome.


small gut microbial differences in vegans and omnivores in an urban US setting



- o Sampled 15 vegans and 16 omnivores.
- 16S rRNA sequence data showed:
 - A. Modest difference in composition in unweighted (presence/absence) Unifrac (PERMANOVA, p=0.007).
 - B. No difference in abundance weighted analysis (p=0.15).
- Plasma metabolome differed more substantially.

short-term feeding of plant- and animal-based diets alters gut microbiota



 10 subjects tracked across 5-d animaland plant-based diets.

	Baseline	Animal	Plant
Fat, % kcal	32	69	22
Protein, % kcal	16	30	10
Fiber, g/1000 kcal	9	0	26

- Bacterial metabolic gene expression (RNA-seq) tends to cluster by diet.
- Animal-based diet increased bile-tolerant microbes and decreased microbes that ferment fibers.
- Diet doesn't always overcome interindividual differences in GMC structure (16S rRNA).

what explains gut microbiome composition variation within a homogenous population?

- Belgian Flemish Gut Flora Project (n=1106)
- 69 clinical and questionnairebased covariates associated with microbiota compositional variation
- Medication use explained largest total variance
- Stool consistency showed largest effect size
- Still only explain ~16% of total variation

the gut microbiome's effect on diet

- alters exposure to nutrients and bioactives
- o generates new compounds, that:
 - serve as energy sources
 - regulate metabolism
 - increase or reduce inflammation
 - cause or reduce oxidative stress
 - are genotoxic/carcinogenic

bacteria can produce new compounds from dietary constituents

food component	bacterial metabolites		
dietary fiber	butyrate and other SCFAs		
soy isoflavones	equol, O-desmethylangolensin		
anthocyanins	hippuric acid & small phenolics		
glucosinolates	isothiocyanates		



diet-microbial community interaction affects exposure to metabolites

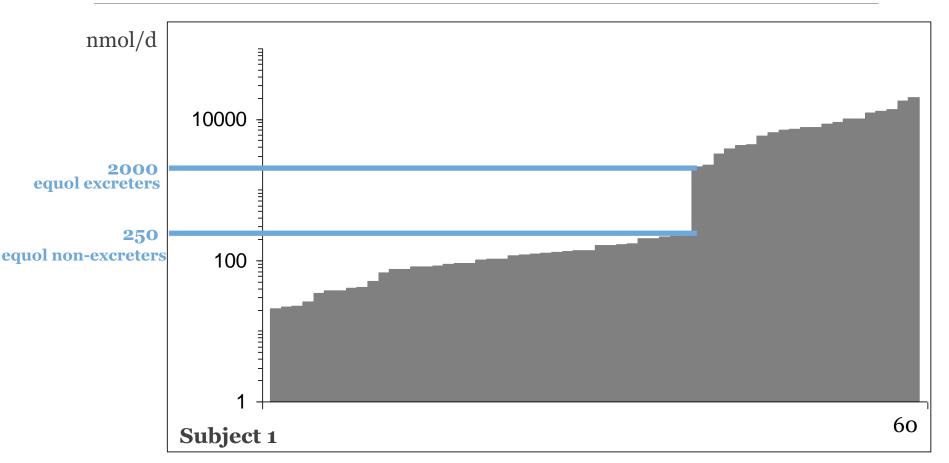
9

13

NSP, g

22

- 17 obese men, randomized cross-over design
- 4 weeks of weight-reduction diets:
 - high-protein; med carb (HPMC)
 - high-protein; low-carb (HPLC)
- HPLC diet decreased butyrate levels


diet fiber-microbial community interactions affect exposure to short chain fatty acids

- 20 healthy participants, in randomized, double-blind, cross-over design
- o five 7-d treatments

- maltodextrin control
- 20-25 g fiber from
 - soluble maize fiber (SCF)
 - SCF + pullulan (P)
 - resistant starch (RS)
 - RS + P

	Treatments				
	Control	SCF	SCF + P	RS	RS + P
Stool pH	6·70ª	6-47 ^b	6-54 ^{a,b}	6.70 ^a	6.59 ^{a,b}
Stool weight (g)	100-1	94.3	102-0	119-0	109-6
Number of stools (self-reported)	1⋅15 ^b	1⋅15 ^b	1⋅37 ^{a,b}	1.71 ^a	1.65 ^a
Stool consistency (self-reported)*	2.08	2.33	2.32	2.13	2.27
Stool consistency (investigator-reported)†	2.00	2.20	2.10	2.15	2.35
Total SCFA (µmol/g stool)	31⋅2 ^b	35.5ª	32·9 ^{a,b}	31·1 ^b	33·7 ^{a,b}
SCFA ratio (% of total SCFA) Acetate Propionate Butyrate	38·9 ^b 29·6 ^a 31·6 ^{b,c}	40·7ª 29·1ª 30·2°	40·6ª 28·6ª 30·9°	41·3ª 25·6 ^b 33·1 ^b	38·5 ^b 25·5 ^b 36·0 ^a

urinary equol excretion with soy challenge: not everyone's gut microbes make equol

pro-, pre- and synbiotics

defining probiotics, prebiotics and synbiotics

probiotics

o *definition:* live microorganisms which when administered in adequate amounts confer a health benefit on the host

-WHO

prebiotics

- o *definition:* non-digestible carbohydrates which are selectively fermented by the gut microbiota, leading to improvements in health outcomes
- in principle, all dietary fibers that are fermented have prebiotic properties
 Lim et al, Mol Nutr Food Res, 17:72, 2005

synbiotics

- o combination of pro- and prebiotics in one product
 - Selma et al, Food Funct, 7:1769, 2016

use of probiotics for GI conditions

- meta-analysis of 74 randomized, placebo controlled studies showed significant efficacy of probiotic treatment for:
 - antibiotic associated diarrhea
 - Clostridium difficile disease
 - Helicobacter pylori positive
 - pouchitis
 - irritable bowel syndrome
 - infectious diarrhea
- not effective for necrotizing enterocolitis or traveler's diarrhea
- magnitude of effect varied by study

use of probiotics for obesity treatment?

- obesity and obesity-related metabolic disorders characterized by altered gut microbiome composition and function.
- altering gut microbial communities can reduce adiposity in rodents.
- lack of consistent data in humans that probiotics reduce or prevent adiposity.

probiotics and CVD risk management

- systematic review of 13 studies of type 2 diabetic patients:
 - 10 RCTs, 1 single-blinded and 2 crossover trials
 - 352 intervention; 358 placebo
- showed efficacy of probiotic treatment in:
 - reducing total- and LDL-cholesterol and triglycerides
 - reducing systolic and diastolic blood pressure
- no effect on HDL-cholesterol
- treatments and magnitude of effect varied

probiotic mechanisms of action

effects on GI symptoms

- modification and stabilization of gut community
- reduction in gut permeability
- stimulation of non-specific and specific immune responses

effects on markers of metabolic disorders

- reduction in cholesterol absorption
- o alterations in microbial bile acid metabolism and reabsorption

potential contributions of fermented foods

fermented foods as probiotics?

legumes • grains • vegetables • fruit • milk • fish • meat

benefits of fermented foods

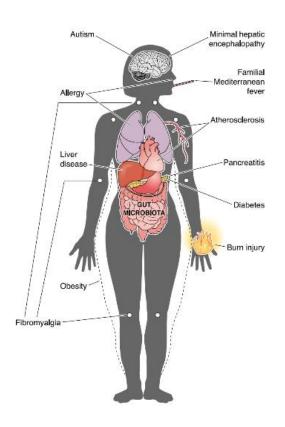
- preserve foods between time of harvest and consumption
- render foods resistant to microbial spoilage and development of food toxins
- enrich the diet through development of diverse flavors, aromas, and textures in food substrates
- enrich biologically with protein, essential amino acids, essential fatty acids, and vitamins
- reduce content of antinutrients (e.g., phytate, lectins)

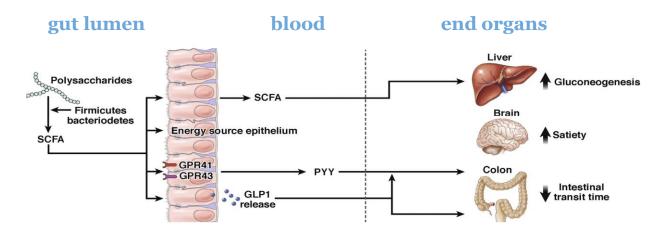
fermented milk products

- source of probiotics, mostly Lactobacillus and Bifidobacterium
- yogurt delivers a large number of live active cultures to GI tract.
- yogurt consumption:
 - positively associated with improved glucose metabolism
 - inversely associated with risk of type 2 diabetes
- randomized controlled interventions are needed to unequivocally show that yogurt and its components can prevent the onset of diabetes

impact of the gut microbiome on human health

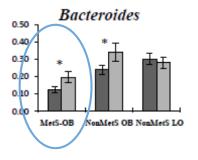
microbes and disease

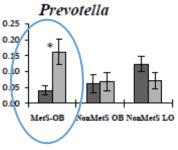

- microbes as infectious agents
 - account for ~20% of cancers worldwide
 - cervical, liver and gastric cancers
- microbes as modifiers of physiology

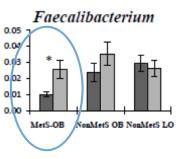

- microbes as modifiers of exposures
 - metabolize dietary constituents, drugs, carcinogens
 - affecting energetics and obesity

microbiome dysbiosis and disease

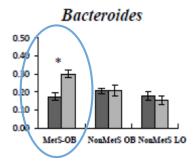
- autism
- autoimmune diseases
- colon cancer
- hepatic encephalopathy
- irritable bowel syndrome (IBS)
- inflammatory bowel disease (IBD)
- metabolic syndrome/diabetes
- non-alcoholic fatty liver disease
- obesity

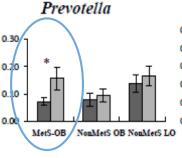


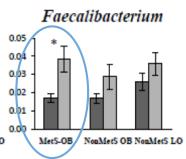

role of the gut microbiome in obesity-related metabolic dysfunction



low-fat and Mediterranean diets restore microbiota in obese patients with metabolic syndrome


LFHCC





MED

- 106 subjects in CARDIOPREV
 - 33 obese with MetS
 - 32 obese
 - 41 non-obese
 - LF and MED diets increased key genera in MetS-OB group.

diet did not alter microbiota in non-obese and obese groups

things to consider when exploring microbiome and disease literature: study design

observational, association studies:

- prospective cohort study vs case-control?
- effects of confounding?

interventions:

- parallel arm vs crossover?
- placebo or other relevant control?
- long enough intervention period?
- o well-described intervention?
- o participant adherence?

issues of association vs causation

things to consider: study population and sampling

study sample

- large enough and adequately powered?
- o well-defined population?
- o sufficient meta-data?
- o any issues of bias?

how was microbiome assessed?

- o phylum, genus, or species level?
- is there sufficient granularity to test the hypothesis?

limited insight into magnitude of risk or benefit

statistically significant, but is it clinically relevant?

consumer takeaways

recommendations for gut microbiome health: the microbial perspective

- o a young field of research
- o a lot we still don't know

general recommendation:

- avoid indiscriminate use of antibiotics
- make food choices to maintain gut microbiome diversity and function

dietary recommendations for gut microbiome and human health

choose a healthy eating pattern including:

- a variety of vegetables from all the subgroups
- o fruits, especially whole fruits
- grains, at least half of which are whole grains
- a variety of protein foods, including
 ... dairy, legumes, nuts, and seeds
- o oils from plant sources

summary

- o diet influences the gut microbiome and its impact on the host
- large variation in gut microbiome across individuals and dietinduced changes often small
- microbial production of bioactive substances varies greatly across individuals
- substantial work needed to establish causal relationships and therapeutic potential in humans

questions?

Thank you!

siggis